Minimal Model Program
Learning Seminar.
Week 22 :

- Faro type vanities.
- Rationally connected varieties.

Rationally connected varieties:
(X, Δ) kIt singularities.
(x, Δ) is of \log general type if $k x+\Delta$ is big (positivity (x, Δ) is $\log C_{2} l_{2 b i}-Y_{2 u}$ if $K x+\Delta \equiv 0$.
(X, Δ) is $\log F_{\text {ans it }}-\left(k_{x}+\Delta\right)$ is ample
Can we "classify" by looking at rational curves:
Uniruled: through a general point $x \in X$ there is a \mathbb{P}^{\prime}.
Rationally: For any $x, y \in X$ general, there is a \mathbb{P}^{\prime} passing through
connected
RCC: For any $x, y \in X$ general, there is a connclled chain of $\|^{13}$'s posing through $x \& y$
unirational: X of tim n admits $\mathbb{H}^{n} \cdots X$ rational generically finite
rational: X of $\operatorname{dim} n$ is rational $\mathbb{P}^{n} \rightarrow X$ birationil

Unirational but not rational: X cubic 3 -fold, $X \subseteq \mathbb{H}^{D^{9}}$

$W=\left\{(p, L) \mid p\right.$ is in L_{0} and L is tangent to X at p ?
W is a \mathbb{P}^{2}-bundle over L_{0}.
W is rational.
ISbir
$\varphi: W \longrightarrow X$. "mips (p, L) to the third intersection point of L with X "
$2 \div 1$
X is not rational: Middle Hodge structure of X is nat the Jacobian of 2 curve.

How there approxher compare?

- X uniruled " $\Longrightarrow \omega_{x}$ is negative.
what happens if ω_{x} is positive or ω_{x} trivial?
- X smooth with no rational corves \Longrightarrow CUX is net.
- $K_{x} \sim a 0$, there could be no rat curves (Ab var) dene set of rat curves (K3 surf ce)
- If X is uniruled, then $K x$ is not psecudo-effective

Remank: X rationally connected $\sim{ }^{4} \omega_{x}$ negative".

RC varieties are block-wise Fans type vanities. 2001
Theorem $\left(G_{12 b e r}-H_{2 r r i s}-M_{2 z u r}-S t_{2 r r}\right): \quad X \longrightarrow B$
sit $B \&$ general fiber are $R C \Longrightarrow X$ is \subset.
Proposition: Image of RC is zoan RC
Warning: This is a big flaih-forwerd. $F_{\text {no }} \Rightarrow R C$.

RC are" block-wise" Fano variebies:

$$
\left\{F_{\text {ono varieties }\}} \subseteq\{R C \text { vanisher }\} \sim\left\{\begin{array}{c}
\text { Towers of } \\
M F S
\end{array}\right\}\right.
$$

birational to.
Ex: Bott or gen Bott towers.
Topology: $\quad X \subseteq \mathbb{1}^{N}$ smooth pros over \mathbb{C}.

$$
\pi_{1}^{\operatorname{top}}(C) \longrightarrow r_{1}^{\operatorname{top}}(X)
$$

C is a complete inf of hyperplanes inside X.
Theorem $\left(k_{0} l_{u}\right): X \xrightarrow[R C]{ }$, for for c very $x \in X$,
there is a family of rational curves. $F: W \times \Vdash^{D^{D}} \rightarrow X$

$$
F(W \times(0: 1))=\{x\}
$$

for every $W E W$, we hive

$$
\Pi_{1}\left(F^{-1}(X),(\omega,(0 ; 1))\right) \longrightarrow \Pi_{1}(X, x) \text { surjective }
$$

In particular 1 a smooth proper RC variety is simply connected.

Can a RC varreby be a universal cover? X smooth
$X R C$ then it his no holomorphic forms,
By Hodge theory, $H^{i}\left(X, \omega_{x}\right)=0$ for iso.
In particular $X\left(\theta_{x}\right)=1$.
$X \stackrel{\text { étile }}{\leftarrow} Y, Y$ will be also $R C$.
$\begin{array}{ll}01 & \text { un } \\ \mathbb{P}^{\prime} \longleftarrow & \text { Then } \quad X\left(\theta_{r}\right)=1\end{array}$

$$
x\left(\theta_{r}\right)=\operatorname{tgg} x\left(\theta_{x}\right) \quad \Longrightarrow \operatorname{tgg} f=1
$$

Theorem (Kontsevich - Tschinkel 2017):
$r: X \longrightarrow B$

$$
r^{\prime}: x^{\prime} \longrightarrow B
$$

smooth proper morphisms. B smooth comected core over chron.
If the genenc points of π and π^{\prime} are birctional over $\mathbb{I}(B)$.
Then for any point $b \in B$, the fibers X_{b} and $X b=n^{1-1}(b)$. are birabional over the residue field of b.
In particular, if the generic fiber is rat Crop RCI, then every fiber is rat (rep. RC).

Maximally $R C$ fibrabion:
X equivalence $(x, y) \in R \Longleftrightarrow x$ and y can be connected by rations core.
Q: $X \xrightarrow{\varnothing} Y$ so that the fibers are the egeriralence classes of R

Theorem: X smooth complex projective varrebier.
There exists $X^{0} \subseteq X$ open, a normal varrely T^{0}, and 2 proj surf morphirm $X^{0} \xrightarrow{\varphi_{0}} T^{0}$ s. ti
1.- The general fiber of φ° is RC.
2.- the very general fiber of ε°, an equivalence class of R

Moreover-, this morphism is unique up to \sim bor.
Example: $X R C C, \quad \Theta: X \rightarrow$ spec (HS).

$$
X K 3 \text { surface, } \varphi=X \longrightarrow X \text {. }
$$

X v. ls over $A b, \varphi: X \longrightarrow A b$.

Q: For which kind of varieties

$\underbrace{K<\text { pi sf }+R c}$.
Y not terminal

Theorem: Let (X, Δ) be a lop parr and let $f: X \longrightarrow S$ be a projective birational morphism such that $-K_{x}$ is relatively big and $O_{x}\left(-m\left(k_{x}+\Delta\right)\right)$ is relatively generated for some $m>0$.
Let $g: Y \longrightarrow X$ be any birational morphism and let
$\pi: Y \longrightarrow X$ be the composition morphism.
Then, every fiber of π is rationally chain connected modulo the inverse image of non-kIt (X, Δ).

Birational morphism ~ composition of FT morphimi.
$\varphi: X \longrightarrow Y$. Giratroml. both $X \& Y$ have term, sing

$$
\varphi_{*}\left(k_{e}\right)=k_{x}-\sum_{a_{i} E_{i},}, a_{i}>0 .
$$

Q-fach
There exists
$E \subseteq X$ effective supported on $E \times(\varphi)$ with $-E$ ample over r.
A ample on $X, \quad \varphi^{*} \varphi_{*} A=A+E, A+E \sim Q, \times 0$.
Undastand Bs- $(K x)$ over Y

$$
\begin{aligned}
& \quad B_{s-}\left(K_{x}\right)=\bigcup_{\varepsilon>0} B_{s}\left(K_{x}-\varepsilon E\right) \supseteq E x(\theta) \\
& K x-\varepsilon E \sim Q_{1} x F \geq 0, \text { then } \\
& \sum a_{i} E_{i}-\varepsilon E \sim a_{0} F F, \text { so } \\
& F-\underbrace{\sum a_{i} E_{i}+\varepsilon E \sim a_{1} \times 0 .} \\
& F-\sum a_{i} E_{i} \sim a, x 0 .
\end{aligned}
$$

$\varphi_{*} F$ is eff, neg Lemma $F-\sum_{i} o_{i} E_{i} \geq 0$

$$
F \geqslant \sum_{i}^{\prime} \alpha_{i}^{\prime} E_{i}
$$

$$
B_{3}-\left(k_{x}\right) \supseteq E_{x}(e)
$$

K_{x} - MMP over Y every step is a FT morphim

Fano type morphism: $X \rightarrow Z$ is said to be
Fans type if there exists $\Delta \geq 0$ on X :
i) $(x, \Delta) \mathrm{klt}$ sing,
ii) $-(k \times+\Delta)$ is net \& fry over Z.

$$
\varphi^{*}\left(\varphi_{*} A\right)=A \Longrightarrow A \sim Q_{1} \times 0
$$

Cor 1: $(X, \Delta) \log$ pair, soch thit $-\left(K_{x}+\Delta\right)$
semiample + big. Then

$$
\pi_{1}\left(N_{\text {on }}-k l t(x, \Delta)\right) \longrightarrow \pi_{1}(x) \text {. }
$$

Proof:
Asumpbion $V \neq \phi$.
Campzni's Therrem.

$$
\left\{\begin{array}{l}
r_{1}(V) \text { in } r_{1}(x) \\
h_{2 s} \text { fimile index. }
\end{array}\right.
$$

X $\quad f$ be an étale finite cora.

$$
\begin{gathered}
W=\operatorname{monkl}(t, \Gamma) \\
\Gamma=f^{*} \Delta .
\end{gathered}
$$

- (kr+I) semiample + big.

In a thesom in Kothi-Mor

$$
n o n-k l t(\tau, I)=r^{-1}(V)=W
$$ is connectas.

Assume $\quad V=\varnothing$.
(X, Δ) is kit. $Y \xrightarrow[f]{\text { étule }} X$
By KV vanishing $h^{i}\left(Y, O_{x}\right)=h^{i}\left(X, O_{x}\right)=0$.
$\chi\left(O_{x}\right)=\chi\left(O_{r}\right)=1$ so f hes degree 1
Then $\pi_{1}(x)=\{1\}$
Lemma: Let $(X, \Delta) k l t, f i X \rightarrow S$ prog morphim
Suppose $-\left(k_{x}+\Delta\right)$ is net over S and $-K_{x}$ is rel by over S. Then $-\left(K_{x}+\Delta\right)$ is semiample over S.

Lemma: Let $(x, \Delta) k l t, f, x \rightarrow S$ pros morphia
Suppose $-\underline{\left(k_{x}+\Delta\right)}$ is net over S and $-k_{x}$ is rel bye over S. Then $-\left(k_{x}+\Delta\right)$ is semiample over S.

Proof:
Claim: There exists $\Theta \geq 0$ for which (X, Θ) is kIt and $-\left(K_{x}+\Theta\right)$ is ample.
proof of the claim: $-K x \sim \theta, S A+B \longrightarrow$ effective
\longrightarrow ample over 5
(1) $=(\underline{(1-\varepsilon) \Delta}+\varepsilon B$. Then
$-\left(k_{x}+\Theta\right) \sim Q, S-(1-\varepsilon) \underbrace{}_{\underbrace{\varepsilon}_{\text {Ref over } S}(K x+\Delta)})+\underbrace{\varepsilon A .}_{\text {ample over } 5}$

For $\varepsilon \underset{\substack{-}}{ } \ll 1$ the pair (X, Θ) remains kit. \square
D nee., $D-\left(K_{x}+\Theta\right)$ ample.
bpf $\longrightarrow \operatorname{lm} D I$ base point free over S.

Corollary 2: (X, Δ) kit, $f i X \longrightarrow S$ pros.
$-K x$ is big over S \& $-(K x+\Delta)$ nee over 5 .
Then every fiber is RCC.
Proof: Trivial after the Lemme + Theorem.
Corollary 3: Let (X, Δ) be a dit pair.
If $g: Y \longrightarrow X$ is firational, then the fibers are RCC.

Proof: Kollzi-Mor: J lt is approximation of kl-.
Hence, the statement follows from the theron.

Corollary 2: (x, Δ) kit, $f i x \longrightarrow 5$ pros. $-K_{x}$ is big over S \& $-\left(k_{x}+\Delta\right)$ neg over s.
Then every fiber is RCC.
Remark: $F T \Longrightarrow R C C \stackrel{+k l t}{\Longrightarrow} R C$.
X FT, (X, Δ) kit and $-\left(K_{x}+\Delta\right)$ big \& net

$$
\begin{aligned}
& X \rightarrow \text { spec }(k),-K x=\underbrace{-(k x+\Delta)}_{\text {big }} \underbrace{}_{\text {eff }}+\Delta \\
& X \text { is } R C C
\end{aligned}
$$

0
Corollary 4: (X, Δ) dit, $X R C c \Longleftrightarrow X R C$.

Corollary 4: (X, Δ) dtt, $X R C c \Longleftarrow X R C$

$$
Y \text { smooth }
$$

(X, Δ)
RCC

Remınk:

fibers of φ are RCC

$$
X R C C+\text { fibers RCC }
$$

$$
\Downarrow
$$

$$
Y_{\text {is }} R C C
$$

$\Downarrow Y$ smosth
Y is RC
\downarrow
x is $R C$
cone over elliptoc curre is Cc is not JIt is RCC but not RC

