Minimal Model Propram Learning Seminar. Week 22:

- · Fano type varieties.
- · Rationally connected varieties.

Rationally connected varieties: (X, a) kit smoularities (X,Δ) is of log general type if $K_{x}+\Delta$ is big (X,Δ) is log Calabi-Yau if $K_{x}+\Delta\equiv0$. positivity

of

wx. (X, \(\triangle\) is log Fano if - (Kx + \(\triangle\)) is ample Can we "classify" by looking at rabional curves. Uniruled: through a general point $x \in X$ there is a IP'. Reconcily For any x, y & x general, there is a 10' passing through x 2 y.

RCC: For any x, y & x general, there is a connected chain

of 113's passing through x 2 y unirational: X of time n admits 1120 ---> X rational generally finite rational: X of dim n is rational IP --- X birational

rational / = existence of exemples Unirational. Cone over elliptic curve thit It does rationally councides not hold. 11 RCC but not RC Variously chain connected Univuled. C × 10' X cubic 3-fold, XS 409 Unirational but not vational: $X \subseteq \mathbb{P}^{4}$ $W = \{(p, L) \mid p \text{ is in } L_{0} \}$ and L is tangent to $X \in \mathbb{P}^{4}$. W is a 10²-bundle over Lo. W is rational. e: W ---> X, point of L with X" 2:1

X is not rational: Middle Hoope structure of X is not the Jacobian of a curve.

	approaches compare?	
• X unituled	wx 15 nopetive.	
what happe	on if wx 1s positive or wx to	v12 ?
X smooth c	with no rational curves Cux is	nef.
	there could be no rat curves CAb vi	ar)
	denue set of rat curves (K3 surfice)	
If X is u	univoled, then Kx is not pseudo-ef	fective.
Cemark: X r	ationally connected ~ "wx negative".	

PC are "block-wise" Fano variebies: Dirational to. Ex: Bott or gen Bott towers. Topology: X CIDN smooth proj over C. 12, top (C) ----> 12, 60p (X) C is a complete int of hyperplanes inside X. Theorem (Kollú): X PC, for every x \in X, there is a family of rational curves. F: W× 10' -> X $F(M \times (0:1)) = \{x\}$ for every ws W, we have $\pi_1(F'(x), (\omega, (0,1))) \longrightarrow \pi_1(X, x)$ surjective In particular 1 a smooth proper RC variety is simply connected

Can a RC variety be a universal cover? X smooth X RC then it his no holomorphic formi, By Hospe theory, $H^{1}(X, \mathcal{O}_{x}) = 0$ for inc. In particular $\chi(0x) = 1$ $X \stackrel{\text{étile}}{\longleftarrow} Y$, Y will be also RC.

UI Then $X(O_T) = 1$ $P' \stackrel{\text{form}}{\longleftarrow} P'$ $\chi(O_r) = \operatorname{deg} f \chi(O_n). \Longrightarrow \operatorname{deg} f = L$

The	or e m	(K	on f se	evich	- Ts	=hink	(el	2017	.):					
R	χ			В				九:	x'-		, B			
sm	soth	ors	per	mər	hume	5.	В	Smo	oth a	Conne	cted	cone	0 80	e dws.
Ij	the	pene	nz	point	5 of	77	and	721	are	bire	lmort	ovev	K	B).
Then	for	any	ben	nt ,	beB	, .	the	fiber	5	(b	and	Χþ	= n'-'	СЬ),
								field						
In	part	rel ev	, ;) 	the s	ener	7C -	fiber)5	rat	. C	resp.	RC 1,	
then	ever/	7]	iber	15 <i>r</i> .	2 t	Cres	p. R	c).						
Max	i(m)	lly	RC	انل	rab	on:								
					e R		⇒ >	X	and by r	Liom	can d cor	be a	onnecl	ed
Q	2	X		6 →	Υ	So	thet	the						
					l25 1e5									

Theorem: X smooth complex projective varieties. There exists X° = X open, a normal variety T°, and a proj surj morphism X° —, T° s.t. 1. The general fiber of 8° N RC. 2. - the very general fiber of 8° 1, an equivalence class of R Moreover, this morphism is unique up to v bir. Example: X RCC, P: X -> Spec(16). X K3 surface, $Q: X \longrightarrow X$. X v.6 over Ab , $e: X \longrightarrow Ab$. neg coeff in the boundary X Com X ter Q: For which kind of virrelies Y - Y ter can we realized the MRC fibrition MMP-une K< 11 preff + RC. T not terminal

Theorem: Let (X, \(\D \) be a lop pair and let f: X -> S be a projective birational morphism such that -Kx is relatively by and $(O_x(-m(K_x+\Delta))$ is relatively generated for some m >0. Let p: T -> X be any birational morphism and let Te: Y -> X be the composition morphism. Then, every fiber of TC is rationally chain connected modulo the inverse image of non-kit (X, \(\Delta\).

Birational morphism ~ composition of FT morphismi. ex __ > Y. birational, both X & Y have term sing. (X) (K+) = Kx - Z'e; E; , a; >0. Q-fact There exists

E \(\times \) effective supported on \(\times \(\times \) \(\widetilde \) with \(-\times \) ample over \(\times \). A ample on X, $e^* e_* A = A + E$, $A + E \sim e_* \times o$. Understand Bs-(Kx) over Y. $B_{s-}(K_{\times}) = \bigcup_{\epsilon>0} B_{s}(K_{\times} - \epsilon E) \supseteq E_{\times}(e)$ Kx-εE ~Q,x F≥o, then ZaiEi-EE ~ax F, 50 F-ZaiEi+EE ~axo. F- ZaiEi ~o,xo. F-Zo! E: 20 Cx F 15 eff, neg Lemma F ? [sait $B_{5}-(k_{x}) \geq E_{x}(e)$

(X/A) log pair, such thit - (Kx+A) Cor 1: somiample + bip. Then TTI (Non-klt (X, A)) ->> TT. (X). Assumption V ≠ Ø. Proof: Campana's Theorem. TalV) in r. (x) Lhas finite index. f be an étale finite cora. W= hanklt (Y, I) $\Gamma = f^* \Delta$ - (KT+J7) semiemple + big. In a theorem in Kolhi - 14on $Non-\kappa(t(T,\Gamma) = \pi^{-1}(V) = W$ is connected.

Assume $V = \emptyset$. otile (X,A) is klt. $h'(X, \mathcal{O}_{\times}) = h'(X, \mathcal{O}_{\times}) = 0$ By KV vanishing 50 f his degree 1 $\chi(0*) = \chi(0*) = 1$ Then $T(x) = \{1\}$ Lemma: Let (X, A) Klt, fix -> 5 proj morphim Suppose $-(K \times + \Delta)$ is net over S and $-K \times is$ rel by over S. Then $-(K_{\times}+\Delta)$ is semiample over S.

Lemma: Let (X, Δ) κ lt, $f: X \longrightarrow S$ proj morphim Suppose $-(K \times + \Delta)$ is net over S and $-K \times$ is rel by over S. Then $-(K_x + \Delta)$ is semiample over S. Claim: There exists \$\P20\$ for which (X, B) is xlf Claim: There can be ample. $A = CK \times + B$ is ample over A + B ample over A + B ample over A + B $(2) = (2 - \epsilon) \triangle + \epsilon B$. Then $-(k_x+\Theta)\sim_{Q,S}-(1-\epsilon)(k_x+\triangle)+\epsilon A$ nef over 5 ample over 5 2 mple over 5 For & 1 the prir (X, @) remains klt. D nef., $D - (k_x + \Theta)$ ample. bpf => |m D | base point free over S.

Corollary 2: (X,Δ) kit, $f(X \longrightarrow 5)$ proj. -Kx is by over 5 & $-(Kx+\Delta)$ neg over 5. Thon every fiber is RCC. Proof: Trivial after the Lemma + Theorem. Corollan 3: Let (X, A) be a dlb pair. If g: 7 -> × 15 birzbionzl, then the fibers

2re RCC. Proof: Kollzi-Mon: dlt is approximation of klt. Hence, the statement follows from the theorem.

Corollary 2: (X,Δ) kit, $\int (X \rightarrow 5) \operatorname{proj}(X) - K \times 1$ by over $\int (X,\Delta) \operatorname{ref}(X) = \int (X,\Delta) \operatorname{ref}(X) =$ Then every fiber is RCC. Remark: FT -> RCC. +KIt RC. X FT, (X, \(\triangle\)) kit and -(K*+\(\triangle\)) by 2 net $X \longrightarrow Spee (IK), -Kx = -CKx + \Delta) + \Delta$ $X \mapsto RCC$ $X \mapsto RCC$ X is RCC Corollary 4: (X, a) dlt, X Rcc > X Rc.

